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Relat ions  between the Phases  of Structure Factors  
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Relations between the phase angles of complex structure factors (analogous to the sign relations 
which are known to apply for real structure factors) are derived, and their possible application to 
crystal-structure analysis is discussed. 

1. I n t r o d u c t i o n  

It  is well known that  for a centrosymmetric crystal the 
signs of structure factors F(h), F(h'),  F ( h + h ' )  and 
F ( h - h ' )  tend to be related by the 'sign relation' 

s(h) = s(h ' )s (h+h ' )  
= s(h')s(h-h'). (1) 

When the crystal is not centrosymmetric one might 
expect an analogous relation to hold between the 
phase angles" 

a(h) = a ( h ' ) + a ( h - h ' ) ,  (2) 

and this turns out to be correct. Whereas s(h) may be 
positive or negative only, a(h) has an infinite number 
of possible values in the range 0-2~. Equation (2) 
does, however, give the most probable value of a(h) 
when c~(h') and a ( h - h ' )  are known. In this paper we 
consider what distribution of values of c~(h) about the 
most probable value is to be expected, how this distri- 
bution is altered when various values of a(h') and 
a ( h - h ' ) ,  for different h',  are given, and a few related 
questions. Whether these results may be of use in the 
determination of crystal structures, particularly of 
proteins, is considered in a final section. 

2.  N o t a t i o n  

The notation is consistent with that  used by Cochran 
& Woolfson (1955). A few amended definitions are 
given, and the less obvious ones repeated. 

x 
U(h) -- ~v nj exp [2~ih. r/] = i U(h)l exp [ia(h)] 

i=1 = A ( h ) + i B ( h ) .  
V*(h) = A ( h ) - i B ( h ) .  

27 
~ exp [2~ih.rj]  = IV(h)] exp [ifl(h)]. V(h) = 2 n/ 

j=l 
N = number of atoms per unit cell. 

q,(r ) = 1 2  U(h) exp [ - 2 ~ i h . r ] .  
v h 

v = unit cell volume. 
N 

em = 2 n ~ .  

E(h) = U(h)/([U(h)t2) ½ . 
(X} = the expected value of any quantity X. 

3.  T h e  r e l a t i o n  a ( h )  = a ( h ' ) + a ( h - h ' )  

For a centrosymmetric crystal it has been shown (Co- 

chran & Woolfson, 1955)that V(h)= U(h ' )U(h+h' )  1: 
The average may equally well be written 

U ( - h ' )  U ( h - h ' )  h' , 
or 

V(h) = U(h')U(h-h') h' (3) 

since U(h') = U(-h') in this case. 
The above result, in the form (3) only, can easily 

be shown to apply also when the crystal lacks a centre 
of symmetry. When the atoms are equal it reduces to 

U(h) = N V ( h ' ) V ( h - h ' )  h'. (4) 

Suppose now that  U(h ' )U(h -h ' )  is known for only 
one value of h'. We write 

27 
1 2: exp [2nih'.ry] exp [ 2 ~ i ( h - h ' ) . r j ] .  U(h) = ~ j--1 

(For the present the atoms are assumed to be equal.) 
From reasoning closely similar to that  set out by 
Woolfson (1954), it then follows that  for a fixed value 
of U(h ' )U(h-h ' ) ,  the expected value of U(h) is 

(U(h)} = U ( h ' ) U ( h - h ' ) .  (5) 

This is the same result as was found by Woolfson, 
but it now relates complex numbers and requires both 

IU ( h ) /  i 

~ --~--°  

0 A 

Fig. 1. 



P ( ~ ( h ) )  = 

exp  [2NlU(h)U(h')U(h-h')J cos (c~(h)-<c~(h)>)] 

<lU(h)l> = I U ( h ' ) U ( h - h ' ) l  and 

<or(h)> = o~(h ' )+o~(h-h ' ) .  

Referr ing to Fig. 1, values of U(h) are thus  dis t r ibuted 

about  the  point  Q in the  complex plane. Wi th  this 
point  as origin, let 

x = A ( h ) - < A ( h ) > ,  y = B ( h ) - < B ( h ) > .  

I t  then  follows t h a t  

- -  - -  1 
x 2  a = y , ,a__-  

2 - - N '  

so t h a t  
N P(x, y)dxdy = ~-exp [-N(x2 +y2)]dxdy 

gives the  probabi l i ty  t h a t  the  point  represent ing U(h) 
occupies the element of area dxdy. When (U(h)> = 0 
this probabi l i ty  dis tr ibut ion reduces to t h a t  given by  
Wilson (1949). I n  any  pract ical  si tuation,  the  value of 
]U(h)J will be known,  and  one is interested only in 
the  dis t r ibut ion of ~(h). F r o m  Fig. 1 i t  can be deduced 
t h a t  

P(~x(h)) oc exp [ - N ( x ~ + y ~ ) ] ,  
and  t h a t  

x~+y2 = {JU(h ' )U(h-h ' ) l  2 

+lU(h)12-2[ U(h)U(h')U(h-h')l 
x cos (o~(h)-<o¢(h)>)}. 

So P(o,) Since d~ is necessarily uni ty ,  we then  have  

P(c~(h)) = exp [ - N { . . . }  o exp [ - N { . . . } ] d c ~ ( h ) ,  

where the  quan t i ty  in brackets  ( . . .  } is as above. On 
cancelling common factors  which are constant ,  

(6) 

0"5 

I~'exp [2N]U(h)U(h')U(h-h')J cos c~]dc~ 
0 

The value of the  definite integral  in the  denominator  
of this expression i s  2gI0(2N j U(h) U(h')U(h-h')J), 
where I 0 is a modified Bessel funct ion of the  second 
kind (Watson,  1922, p. 181). Equa t ion  (6) is more 
convenient ly wr i t ten  as 

P(c~(h)) = exp [ - 2 X  s in2i (o~(h)- (~(h)>)]  
2zte_Xlo(X) , (7) 

where X = 2N]U(h)U(h')U(h-h')J | 
and (o~(h)> = c ~ ( h ' ) + ~ ( h - h ' ) .  / (8) 

Equa t ion  (7) thus  gives the  required dis t r ibut ion of 
~(h) when J U(h)J, U(h')  and  U ( h - h ' )  are known.  
For  small  values of c~(h)-<~(h)> the  dis t r ibut ion is 

0 .L, 
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Fig. 2. Distribution of phase angles about the expected value, 
in a particular case. 

Table 1. Values of exp [ - 2 X  sin 2 ½(~-<c~))] 
2~e-Xlo (X) 

0 20 40 60 

0 0.159 0.159 0.159 0.159 
1 0-342 0.322 0.271 0.207 
2 0.516 0.457 0.323 0.190 
3 0.655 0.547 0.325 0.146 
4 0.769 0.604 0.302 0.104 
5 0.867 0.642 0.269 0.071 

X 6 0.965 0.673 0.237 0.048 
7 1.035 0.679 0.261 0.031 
8 1.110 0.686 0.171 0.020 
9 1.179 0.686 0.144 0.013 

10 1.245 0.682 0-120 0.008 
11 1.308 0.674 0.099 0"006 
12 1.367 0.664 0.083 0"003 
13 1.424 0"651 0.068 
14 1.479 0.637 0.056 
15 1.532 0.621 0.046 

(o,-<o,>) ( ° ) 
80 100 

0.159 0.159 
0.149 0.105 
0.099 0.049 
0.055 0.019 
0.028 0.007 
0.014 0.002 
0.007 
0.003 

120 

0.159 
0.076 
0.025 
O.007 
0.002 

140 

0.159 
0.059 
0.015 
0.003 

160 

0.159 
0-049 
0.011 
0.002 

180 

0.159 
0.046 
0.009 
0.002 
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almost Gaussian. Values of the function (7) are given 
in Table 1, and the form of the distribution for the 
particular ease N = 30, 

IV(h)l = I U(h ' ) [  = lU(h-h ' ) [  = 0.3, 

is shown graphically in Fig. 2. In this instance it can 
be deduced by numerical integration that  the prob- 
ability that  a(h) is within +20 ° of a ( h ' ) + a ( h - h ' )  is 
0.31, within ±40 ° , 0.57, etc. 

The result (7) applies when the atoms are equal. 
When they are not, we may assume by analogy with 
the corresponding result for the centrosymmetric 
crystal (Cochran & Woolfson, 1955) that  

(U(h))  = KU(h ' )U(h-h ' ) ,  

where K is entirely real. The 'least squares' value of 
K is found to be 

K = U(h)U*(h')U*(h-h') h'h" 

- IU(h ' ) l~ lU(h-h ' ) l  ~h'h' = e3/e~, 

as for the eentrosymmetrie crystal. Remembering that  
n o w  

x--ih = y-~h __ ½e~., 

one finds that  (7) still applies, with 

2e3 } X = e-~2 [U(h)U(h')U(h-h')] 

and (a(h)} -- ~ ( h ' ) + ~ ( h - h ' ) .  

(9) 

it is found tha t t  
~2 = ca2 + ( m -  1)sge~-msa 2 

e~+(m-1)e4 

These results are exactly as for the centrosymmetric 
crystal. Following the line of argument given in § 3, 
one then arrives at (7), with 

2es ~ lU(h) ~ U(h')U(h-h')l ] 
X = e~+(m_l)e2e~_mes 1 (10) 

~n 
and a ( h ) =  phase of~" U ( h ' ) U ( h - h ' )  . 

1 

The following properties of this result are worth 
noting: 

(i) When m = 1, (10) reduces to (9) when we re- 
member that  e~ (~ N -a) can be neglected compared 
with e~ (~ -~-s). 

(ii) When the atoms are equal, 

X = 2NIU(h ) ~ U ( h ' ) U ( h - h ' ) l .  
1 

(iii) When the number of terms in the summation 
is very large 

U(h') U ( h - h ' )  -~ mV(h),  
1 

so that  
X --> 2e-------L-3 e~e,_e~lU(h)V(h)l and ( ~ ( h ) ) - + f l ( h ) .  

If, in addition, the atoms are equal, P ( a ( h ) ) =  0 
except when a(h) = (a(h)}, that  is, the phase angle 
is precisely determined. 

4. The rela t ion between a(h) and the phase of 
U(h') U(h--h ' )  

How are a number of 'phase indications' from values 
of U(h l )U(h-h l ) ,  U(h~)U(h-h2) . . . .  to be combined ? 
From the result (3) it is clear that  from a large num- 
ber of such indications the phase angle fl(h) can be 
determined precisely, but only when the atoms are 
equal does this give ~(h). We assume now that  the 
atoms are unequal, and that  values of U ( h ' ) U ( h - h ' )  
are available for only some limited number m of 
different values of h'. Considerations of symmetry 
suggest we take 

(U(h)} = k ~ U(h')U(h-h')  , 
1 

where k is entirely real. The least-squares value of k 
is found to be 

e~+(m-1)e4 ' 
and writing 

h,h' 

~2 = ( [ U ( h ) - k ~ ,  U(h')U(h-h')]) 9 , 
1 

I t  would be useful to know the a priori distribution 
of the angle ~(h)-fl(h),  that  is, the expected distri- 
bution when only I U(h)J is known. This would in- 
dicate for what range of values of ]U(h)J it was worth 
while to begin to calculate V(h)--if ~(h) is going to 
be widely distributed about fl(h) it is not worth while 
to estimate the value of the latter. I t  is readily shown 
that, as for the centrosymmetric crystal, 

(V(h)) -- es U(h), 
~2 

and that  a 2, defined as 

I V(h) -  e_a U(h) 2h, 
e2 

is equal to ca-ear/e2. 
On the usual assumptions, it then follows that  

P(IVI, fl)dlVidfl 

1 exp - ~  g - - g  d l g l l g l d ¢ ~ .  
y~(y2 ~2 

t The symbol ~ is not to be confused with ~s defined in 
§ 2, with which it has no connection. 
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0 20 

0 0.159 0-159 
1 0.579 0.487 
2 1.128 0-664 

R[E I 3 1.692 0.553 
4 2.256 0.326 
5 2.820 0.141 
6 3-384 0-048 
7 3.950 0.005 
8 4.514 0.002 
9 5-078 

10 5-642 

Table 2. Values of P(A) 
A (°) 

40 60 80 100 

0.159 0.159 0.159 0-159 
0.305 0.159 0.080 0.044 
0-166 0.029 0.005 0.002 
0.031 0.001 
0.002 

120 140 160 180 

0.159 0.159 0-159 0-159 
0.027 0.019 0-015 0-015 

(The index h can be omitted here without leading to 
any confusion.) Writing A = c~-fl, the distribution of 
A when [V I is unknown is thus 

I °° [ 1 ~(ealU]~ ~ .P(A) = _~lzra 9 v=oeXp - - ~  [ \ - - ~  / 

+ lVI2-28--3-3 [UVI cos A}]VdV . 
82 

On evaluating the integral, it is found that  

1 R[EI cos A 
P(A)=exp[-R~IEI~] ~ +  2V:~ 

× exp [R2IE[ ~ cos ~ A]{1 +ef t  (R]E[ cos A)}) (11) 

where 

83 E 3 
R = aVs~ " (e~84_e2)½ and IEI ~. = IU[~/82. 

Thus the a priori distribution of c~ about fl is sharpest 
for the larger structure factors ([E] large), particularly 
for structures in which the atoms are nearly equal 
(R large). Some values of the distribution (11) are 
given in Table 2. 

An idea of the order of magnitude of R can be 
obtained from the fact that  for CaBaO4(OH)a. H~O it 
is 1.92. I t  should be emphasized that  P(A) is the prob- 
ability estimated from ]U(h)l only. As soon as values 
of U(h ' )U(h -h ' )  are known the probability should, 
at least in principle, be calculated from (7) with X 
and <~(h)> as defined by (10). 

5. Discussion 
When a crystal is centrosymmetric, sign relations can 
in suitable cases be used to determine the structure 
completely. There is no hope of achieving this from 
relations between the phase angles when the crystal 
lacks a centre of symmetry. In  certain circumstances 
these relations may be useful however. The method of 
isomorphous replacement, as used by Bokhoven, 
Schoone & Bijvoet (1951), for example, gives phase 
angles with an inherent twofold ambiguity. If now the 
ambiguity is removed for some limited number of the 

larger unitary structure factors (by finding an ap- 
proximate structure), these phases can be used to 
indicate which phase is correct for at least some of the 
remaining structure factors. The success of this process 
would of course depend on the number of phase angles 
known without ambiguity, the number of atoms in the 
unit cell, etc. For example, suppose that  h r = 30 
(equal atoms), ]U(h)] = 0-3 and c~(h) is known from 
the isomorphous replacement results to be either +60 ° 
or - 6 0  °. If we also know that  for a particular 
h', [U(h ' )U(h-h ' ) [=0.09 and o¢(h ' )+a (h -h ' )=40  °, 
reference to Fig. 2 shows that  from this one indication, 
P (+60° ) /P ( -60  °) = 0.42/0-069, since <~(h)> = 40 °. 
That is, P (+60  °) = 0.86. Dr F. H. Crick poin~d this 
out to the writer, and suggested that  a similar proce- 
dure might be used to determine additional phase 
angles for a protein crystal, once a number of phases 
had been unambiguously established. 

The distribution given by (7) can be expressed in 
terms of normalized structure factors by writing 

X = (2ea/8~/~)]E(h)E(h')E(h-h')l.  

Values of IEI of the same order of magnitude axe to be 
expected whatever the complexity of the crystal struc- 
ture (Hauptman & Karle, 1953), so that  the quantity 
8a/8~/2 is a measure of the efficiency of phase relations 
(or of sign relations). Since ea/8~/~ varies approximately 
as N-½, it is clear that  for N ~ 5.10 a, as in a globular 
protein crystal, a very broad distribution of a(h) about 
<a(h)> is inevitable. However, the theory given in 
previous sections is not entirely applicable since the 
data available from crystalline proteins do not extend 
to spacings sufficient to resolve individual atoms. One 
must take into account the effect of this limited res- 
olution. On retracing the steps of the calculation, one 
finds that  83/8~/2 a r o s e  from the substitution 

U(h) U* (h') U* ( h - h ' )  h, h, 

(i U(h)l~)a/~ -- 8a/8~/~ . (12) 

This substitution is correct only when the range of 
indices is sufficient to produce well resolved maxima 
in a Fourier synthesis whose coefficients are the values 
of U(h). Otherwise the left hand side of (12) should 
be used as it stands. Expressed in terms of normalized 
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structure factors it is E ( h ) E * ( h ' ) E * ( h - h ' i  h'h'. What- 
ever the limitations of the theory given in earlier 
sections, this quant i ty  can in any case be taken to be 
a measure of the efficiency of phase relations since it 
measures the average degree of correlation between 
E(h), E(h ' )  and E ( h - h ' )  (in such a way as to express 
the result as a real number). This quant i ty  can also 
be expressed in terms of the electron distribution. Let 

~,(r) = 1 ~ U ( h )  exp [ - 2 7 ~ i h . r ] ,  
v 

where the sum is over n values of h contained in a 
limiting sphere of volume v~ in reciprocal space, so 
tha t  n = VVr, where v is the unit cell volume. Then 

I ~ d v  = 1 2,iU(h)i~. n v = v I U ( h ) i ~ h  = v ' l U ( h ) l ~ h  

and 

l 1 
Qa~ dv = -~ .~.~ U (h ) U* (h') U* ( h -  h') 

v2rU(h)U*(h')U*(h-h')h'h" . " 

The averages are now over a limited range of indices, 
viz., those contained in the limiting sphere of volume 
v r. A 'proportional to '  rather  than an 'equals' sign 
has been used above since a factor, which is however 
independent of vr, has been omitted. 

Hence 

E(h) E* (h') E* ( h -  h') h, h' 
• fe~ dv 

off. 

However, the average on the left-hand side at  present 
includes terms E(O)lE(h')f  2 which are always positive 
and in whose value we are not interested. They can 
be excluded by imagining the constant term U(0) to 
be omitted from the Fourier synthesis, tha t  is, by 
measuring the electron density from its average value, 
~,. Thus, finally, 

1 f (~"-~)adv 
E ( h ) E * ( h ' ) E * ( h - h ' ) h ' h "  oc (13) 

is a measure of the efficiency of phase relations, or 
of sign relations as the case may be, between those 
terms which lie within a limiting sphere of volume yr. 
Phase relations, or sign relations, therefore work best 
for structures with high 'positive contrast ' ,  tha t  is, 
a few regions of high electron density and wide regions 
of small, or constant, density. This condition may well 
be satisfied in certain projections of a protein crystal. 
Fur ther  implications of relation (13)" can best be ap- 
preciated by considering a few one-dimensional (and 
for simplicity, centrosymmetric) examples. 

The distribution shown in Fig. 3(a) would give 

E ( h ) E ( h ' ) E ( h - h ' )  h'h" the limiting value +0.33. How- 
ever, the average taken only over a limited range of 

(a) 

~osi ( b 
k./ 

~s T 

Fig. 3. (a) The limiting form of a one-dimensional distribution 
of nine equal atoms. 

(b) The same distribution at  low resolution. The 'hole' 
is now sharper than  the 'peaks', giving negative contrast.  
Sign relations consequently break down. 

(c) A distribution of two equal atoms, in positions marked 
by arrows, at  low resolution. 

(d) The same, at  moderate  resolution. 
(e) An a t t empt  to produce (d) with the structure factors 

which gave (c), extended in range by application of sign 
relations. 

indices ( - 6  to +6) sufficient merely to produce the 
distribution shown in Fig. 3(b), is actually negative, 

/ i  

f (~s-~)adv is then negative. Sign relations, in since 

the usual sense, simply do not exist between structure 
factors in this range. 

Next  consider a distribution which at  a moderate 
degree of resolution is as in Fig. 3(d), and at  a low 
degree of resolution as in Fig. 3(c). While the value of 

E ( h ) E ( h ' ) E ( h - h ' )  h'h" is positive for both the limited 
and the extended range of structure factors, it is clear 
from considerations set out in Sayre's (1952) paper 
that ,  given the signs of all structure factors cor- 

AC8 33 
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responding to Fig. 3(c), one cannot  deduce from them 
enough fur ther  correct signs to produce Fig. 3(d). 
Only  a sharpening of the  original m a x i m u m  results, 
and  not  its resolution into indiv idual  max ima ,  as is 
shown in Fig. 3(e). Such considerations mus t  be kept  
in  mind  in  any  use of sign relations or phase relat ions 
when the  da ta  are not  sufficient to resolve indiv idual  
atoms. 

I am grateful  to m y  colleagues Dr  F. H. Crick and  
Dr  M. M. Woolfson for the  helpful  advice t hey  have  
given in  the  course of discussions on this  topic. 

References 

BOKHOVEN, C., SCHOONE, J .  C. ~; BIJVOET, J .  i~. (1951). 
Acta Cryst. 4, 275. 

COCHRA~, W. & WOOLFSON, M. M. (1955). Acta Gryst. 
8 ,1 .  

~AUPT~A_~, H. & ~ ,  J.  (1953). Solution of the 
Phase Problem. I. The Centrosymmetric Crystal. A.C.A. 
Monograph No. 3. Wilmiugton: The Letter Shop. 

SAYP.E, D. (1952). Acta Gryst. 5, 60. 
WATSOn, G. N. (1922). A Treatise on the Theory of Bessel 

2'unctions. Cambridge: University Press. 
WrLSO~¢, A. J .  C. (1949). Acta Cryst. 2, 318. 
WOOLFSON, M. M. (1954). Acta Cryst. 7, 61. 

Acta Cryst. (1955). 8, 478 

New Calculations of Atomic  Scattering, Factors 

BY J. BERGHUIS, IJBERTHA M. I-IA A~TAPPEL AND M. POTT~.RS 

Mathematical Centre, Amsterdam, The Netherlands 

~ D  B. O. LOOPSTRA*, CAROLINE H. 1VLkCGTTJLAVRY AND A. L. VEENENDAAL 

Laboratory for General and Inorganic Chemistry, University of Amsterdam, The Netherlands 

(Received 17 February 1955) 

Scattering factors for twenty-three atoms have been calculated from Hartree and Hartree-Fock 
radial wave functions. The results are compared with James & Brinclley's values and with those 
recently obtained by other authors. 

1 

Since the  calculations of scat tering factors by  J a m e s  
& Br indley  (1931) m a n y  new da ta  on electron distribu- 
t ions in  atoms, computed by  the self-consistent field 
method,  have  become available.  The work of J a m e s  
& Br indley  (quoted as J B  in  the  following) was some 
years  ago extended b y  Viervoll & 0 g r i m  (1949), who 
included electron dis t r ibut ion-data  on Na  +, K+, and  
Cu+ and  extended the sin 0/~t range. Viervoll & 0g r im  
were p r imar i ly  interested in  the f values at  higher  
sin 0/~t; t hey  therefore applied only wave funct ions 
calculated without  exchange, as the corrections for 
exchange would p resumably  have  only small  effects 
on the  scattering factors in this  region. 

Recent ly ,  new values for scattering factors have  
been calculated by :  (a) McWeeny (1951) (McW), for 
all at0m~ lighter than hTa, from wave functions given 
by  Duncanson  and  Coulson; (b) Hoerni  & Ibers (1954) 
(HI) for C, 1~ and  0 from newer avai lable  self-con- 
sistent  field da ta  wi th  exchange;  (c) H e n r y  (1954), 
for Au + and  Hg ++, f rom self-consistent field da ta  
wi thout  exchange. 

I t  is evident  f rom comparison of the  results of H I  
and  J B  tha t  the  taking into account of exchange gives 
effects which make  the corresponding effects on cal- 
culated structure factors outside the  error l imit  for 

* Now at J.E.N.E.R., Kjeller per Lfllestrom, Norway. 

s tructure de terminat ion  by  accurate modern  methods.  
Also, the  in terval  in sin 0/~t chosen b y  J B  is ra ther  
too large for sui table interpolat ion in the  low sin 0/~t 
region. 

In  view of the  prepara t ion of Volume 3 of the  new 
edition of the International TaSles for X-ray Crystal- 
Zography, i t  was decided to recalculate a tomic  scat- 
tering factors from all  the  newest avai lable  self- 
consistent field data.  This decision had,  in  fact, been 
taken  before we were aware of the work being done b y  
HI.  We therefore included C, N and  0 in our com- 
putat ions,  which has the advantage  of giving the  f 
values for these atoms at  the same intervals  as for the  
other atoms, and, moreover, affords the  possibi l i ty of 
an  extra  check. 

In  this  paper  we give our results on all  atoms, up to 
Rb+~ for which the  required electron dis t r ibut ions are 

avai lable  t .  We omit ted H and He, however, for which 

t Besides the literature mentioned at the foot of Table 1, 
we found references to calculations on Sc and Ti (Hancock, 
1934), and on Ni (Gray & Manning, 1941). We were unable 
to obtain the former; the latter is a short communication 
without numerical data. 

Manning & Goldberg (1938) gave data on Fe. These, how- 
ever, are on a logarithmic scale of r, whereas the data for the 
other atoms were on a linear r scale. It is therefore impossible 
to handle the Fe atom in the same mechanical way as the 
others. We are now computing the scattering factor of Fe 
separately and we intend to report on it in due time. 


